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Abstract

A receptor modeling study was carried out in Kuopio, Finland, between January and April 1994. Near the center of
town, the daily mean concentrations were measured for PM10, sulphur dioxide, carbon monoxide and Black Smoke.
Elemental concentrations of PM10 samples for 38 days were analyzed by ICP-MS. The main sources and their
contributions to the measured concentrations of PM10 particles were solved by receptor modeling using a factor
analysis-multiple linear regression (FA-MLR) model. Because a dust episode was very strong during two sampling days,
the FA analysis was strongly influenced by this episode and did not give main factors. The factor analysis, when the two
episode days were omitted, gave credible factors related to the sources in the study area. The four major sources and their
estimated contributions to the average PM 10 concentration of 27.2 pgm ™ ® were: soil and street dust 46-48%, heavy fuel
oil burning 12-18%, traffic exhaust 10-14%, wood burning ca. 11% and unidentified sources 15-25%. However, during
spring dust episode days, with maximum PM 10 concentration of 150 pgm ™3, the main source of PM 10 was soil. © 1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction groups; chemical mass balance (CMB) and multivariate

methods. CMB uses chemical composition data of par-
ticles both from the measuring site and from the sources.
In principle, CMB can calculate the proportions of all
known sources from one ambient air sample. Multivari-
ate methods, like target transformation factor analysis
(TTFA) and factor analysis-multiple linear regression
(FA-MLR), normally use only chemical composition
data of ambient air particles, and solve both the number
and chemical characteristic of sources and their contribu-
tion to the measured concentrations. However, methods
require dozens of ambient air samples, because source
apportionment is based on statistical methods. Complete
*Corresponding author. description of these receptor modeling techniques have

Receptor modeling has been applied in the study of
particulate air pollution from the early 1970s. The start-
ing point of receptor modeling is reversed compared to
dispersion modeling. The main sources of particulate
matter are solved using chemical composition of ambient
air particles at the measuring site and chemical charac-
teristics of source emissions. Traditionally receptor
modeling methods have been divided into two main
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been presented by Henry et al. (1984), Gordon (1988) and
Hopke (1991). One of the newest and most promising
techniques is the use of neural networks. This method is
still under development and the first receptor modeling
results have been published by Wienke and Hopke (1994).

The purpose of this study was to identify the main
sources of inhalable particulates (PM10) and their con-
tribution to the measured PM10 concentrations in
sampling sites where co-combustion were used in energy
production and where resuspended dust episodes can
occur. Receptor modeling was done simultaneously with
the health study Pollution Effect on Asthmatic Children
in Europe (PEACE), the purpose of which was to deter-
mine the effects of short-term changes of air pollutants on
the respiratory health of children with chronic respirat-
ory symptoms. Results of PM 10 particles’ health effects
on the basis of the Finnish part of the PEACE have been
published by Timonen and Pekkanen (1997).

2. Materials and methods
2.1. Sampling site and emission sources

Air pollution measurements were carried out between
31 January and 30 April 1994 and the measuring site was
located near the center of Kuopio (Fig. 1). The city of
Kuopio (62°53'N27°38'E, 100 a.s.l.) has 85000 inhabit-
ants and is situated in the middle of the lake region of
Finland. The sampling site was located at least 50 m from
any of the surrounding main streets, in an area sur-
rounded by a small number of buildings of 3-5 floors.
The average daily traffic density on the surrounding
streets was calculated to be about 14 000 cars per 24 h on
weekdays, 11000 cars per 24 h on Saturdays and 9000
cars per 24 h on Sundays.

The only other major source of pollution besides traffic
was a peat-fired power station of 350 MW equipped with

Fig. 1. Point sources of airborne particles in the Kuopio area and the most important streets in the town. In map: 1: pulp mill; 2:
industrial power plant; 3: chipboard factory; 4: peat-fired power station 5: industrial power plant; X: measurement site; and K: town

center.
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an electrostatic precipitator located 1.5 km southeast of
the sampling site. Over 80% of residential heating
systems in the city are connected to this power station
via the municipal district heating system. Some small
industrial power plants using residual oil as their fuel
were located at distances of 1.5-3km from the site

(Fig. 1).
2.2. Field measurements

Inhalable particles (PM10) were measured using
a Harvard impactor (Air Diagnostic and Engineering
Inc.) with a sampling flow of 10 1/min. The impactor is
similar to the one described by Marple et al. (1987),
except that it has only one impaction stage. Air flow was
controlled by a critical orifice and real sampling flow was
measured before and after each sampling period using
a rotameter. The sampling period was 24 h, covering the
period from noon to noon (+ 1h). Particles were col-
lected to Andersen 2 um Teflon filters. A microbalance
(Sartorius M3P) was used to weigh the filters before and
after sample collecting, and the static charge of filters was
removed before each weighing using 24! Am alpha source.
Filters were stored at constant humidity and temperature
at least 24 h before weighing and were transported to the
measuring site using glass petri dishes. The quality of
filter handling was determined by collecting 10 field
blank samples, and the quality of weighing was control-
led by a constant mass filter. Sulfur dioxide was mea-
sured by fluorescence analyzer (Monitor Labs Inc Model
8850) and carbon monoxide by a non-dispersive infrared
spectrometer (Thermo Environmental Instruments Inc
Model 48). Mean concentrations for 24 h were calculated
from one-minute mean concentrations. Mean black
smoke concentrations for 24 h were measured simulta-
neously with inhalable particles. Samples were taken
onto Whatman 1 filters and measuring of reflectance was
carried out in the University of Wageningen, the Nether-
lands (Brunekreef, 1993). The quality was taken into
account by collecting 10 field blank samples. Meteoro-
logical parameters (wind speed and wind direction and
temperature) were measured in the municipal weather
station, 1 km south from the measuring site.

2.3. Chemical analyses

The measuring period covered three months and 88
filter samples. Because of limited financial resources, only
38 filters were analyzed. These filters were chosen from
whole measuring period, ensuring that both high and low
concentration days were represented. Elemental concen-
trations of these filters were analyzed by ICP-MS method
(SCIEX ELAN 5000) in the laboratory of Geological
Survey of Finland. Particles were extracted from filters
with the mix of HF (0.5 ml, 40%), HNO; (1.5 ml, 60%)
and ultrapure water (8§ ml). Total extraction time was

four days. The complete description of the analysis
method has been published by Jalkanen et al. (1996). The
quality of analyses was ensured by analyzing certified
standard material (National Bureau of Standards, Stan-
dard Reference Material 1648, Urban Particulate Mat-
ter). Thirty-one elements were analyzed but only 18 were
sufficiently above the limit of detection and are reported
here.

2.4. Selection of modeling method

Because a detailed source information was not avail-
able, the only possibility was use of multivariate
methods. Factor analysis-multiple linear regression
(FA-MLR) was selected as a method because the airshed
of Kuopio is not very complex due to light industrial-
ization. In addition to that, FA-MLR is based on tradi-
tional statistical methods, and it is simple to use with
common statistical software packages. This method was
first presented by Kleinmann et al. (1980) and a modified
version later by Morandi et al. (1987). It uses factor
analysis to identify the number of sources and to choose
an independent marker element for each source. After
that, multiple linear regression is carried out using
marker element as an independent and total particle
concentration (e.g. PM10) as a dependent variable. The
basic equation of FA-MLR is

M=

Y=Y RX, +C, (1)

i=1
where Y is the dependent variable concentration (in this
case PM10), X; is the concentration of tracer of each
source, R; is the regression coefficient of each tracer, p is
the number of sources and tracers, and C is a constant
(proportion of particles from unidentified sources).

Equation (1) requires that every source has a unique
tracer. However, according to Morandi et al. (1987) it is
possible to calculate a secondary tracer C’ for a source
without unique tracer, if all sources releasing tracer
X; are known. First, the atmospheric concentration of
X, is the sum of its individual source contributions, and
can be calculated as follows:

p—1
X;=) RU,+C, 2)
i—1

where p is the number of sources releasing X;, U; is the
atmospheric concentration of the unique tracers of sour-
ces which also release X, R’; is the regression coefficient
for the unique tracers of sources contributing to X;, and
C' is the fraction of X; which is associated with sources
without a unique tracer. Next, C’" is solved from the
equation, and it can be used as a unique tracer in the final
apportionment equation (Eq. (1)). All statistical analyses
were done using SPSS PC + 5.0 software.
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Table 1

Statistics for the measured variables in Kuopio in 1994 (38 samples, averaging time 24 h)

Variable Minimum Maximum Median Mean Standard deviation
PM10 (n = 38) (ugm™?) 4.7 158 19.3 272 29.2

PM10 (n = 36) (ug m™3) 4.7 61.6 18.7 21.2 13.0

CO (mgm™?3) 0.14 2.8 0.51 0.63 0.55

SO, (ugm™3) 0.13 324 3.6 6.6 0.74

Black smoke (ugm ) 1.6 57.0 12.8 15.1 12.0

Temperature (°C) —21.6 9.8 —54 —-50 7.7

Wind speed (ms™1!) 1.5 8.0 34 4.0 1.9

Table 2

Statistics for the elemental concentrations in Kuopio in 1994 (38 samples, averaging time 24 h)

Element Minimum Maximum Median Mean Standard deviation Number of samples
n=38 (ngm~3) (ngm~3) (ngm~3) (ngm™3) (ngm~3) under detection limit
Al 2.8 10200 300 940 2000 0

Ba <1 118 4.4 12 23 5

Ca 28 6500 300 650 1200 0

Cr <2 14 1.6 2.4 2.9 3

Cu 32 124 21 30 25 0

Fe 30 8900 300 840 1700 0

K <70 2200 120 250 430 2

Li 0.4 8.1 4.3 4.5 1.9 0

Mg 11 3200 120 320 630 0

Mn < 0.2 140 13 21 27 2

Na 15 2600 240 390 510 0

Ni 0.5 9.2 3 33 1.9 0

Pb 0.3 32 8.4 10 6.5 0

Si <170 26300 770 2900 5700 6

Sr 0.4 58 2 5.7 11 0

Ti <10 750 18 64 150 10

\Y% 0.5 25 4 5.8 5.1 0

Zn <2 60 14 18 16 5

3. Results ited particles from combustion processes and the dust

3.1. Measured data

The statistics of the measured variables are presented
in Table 1. The means, medians, standard deviations,
maximums and minimums and number of samples under
the detection limit in chemical analysis are presented in
Table 2. PM10 concentrations during 38 days of data
varied between 5 and 158 uygm~® with a mean of
27.2 pgm~ 3. Fig. 2 shows the locations and concentra-
tions of those days compared to the complete 88 days of
data. Remarkable in this figure are the very high PM10
concentrations between 10 and 13 April. This type of dust
episodes appear every spring when the snow and ice melt
away and the ground and the streets become dry. Depos-

formed from asphalt and street sand by studded tires are
resuspended by wind and traffic into the ambient air. As
a consequence, most elements reach their maximum con-
centrations during these episodes and also the national
air quality guidelines of particulate matter are often ex-
ceeded.

3.2. Factor analysis

Before analysis, all concentrations under detection
limit were replaced by zero. According to Morandi et al.
(1987) replacements less than 15% had no notable effect
on the results of qualitative factor analysis. The amount
of replacements was not more than 13% for elements
included in the final analysis (Table 2). The use of
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Fig. 2. Results of PM10 measurements in Kuopio in 1994.

multivariate methods requires a minimum number of
samples, which can be calculated using a “rule of thumb”
equation when the number of variables is known (Henry
et al., 1984). Because the number of samples was 38, the
maximum number of variables according to Henrys
equation could be 13. Selection of variables to the analy-
sis was done on the basis of preliminary factor analysis
and literature (Hopke, 1991; Huang, 1994). For instance,
there were several alternative markers for soil dust which
were loaded only in the soil factor. Selected variables for
the final analysis were CO, SO,, black smoke, Al, Cr, Cu,
Fe, Li, Mg, Ni, Pb, V and Zn.

A matrix of 38 samples and 13 variables was extracted
using principal component method. Principal compo-

Table 3
Factor analysis results with 36 days (without dust episode)

nents with eigenvalues over 1 were transformed by
VARIMAX rotation. Three first factors explained 78%
of the total variance of data. In the first factor the highest
loadings were in soil markers Al, Fe and Mg, but there
were very high loadings with heavy fuel oil burning
markers V and Ni. The second factor had high loadings
with CO, black smoke and PDb, representing traffic emis-
sions. The third factor was highly loaded with SO, and
Cu, possibly representing oil burning processes. Alto-
gether, factor solution for 38 samples was unclear and
difficult to interpret. The cause for poor factor analysis
result was probably due to the dust episode when almost
all elements reached their maximum concentrations at
the same time.

To avoid the influence of dust episode, the two highest
PM10 concentration days, i.e. 11 and 13 April, were
removed, and a factor analysis was repeated with the
remaining 36 samples (Table 3). In this case, factor solu-
tion is better and more believable. There are four factors
with eigenvalue over 1 and the sum of variances is 79%.
The first factor explains 33.7% of the total variance of
data and Al, Mg and Fe are highly loaded, so this factor
represents soil and street dust. Factor 2 accounts for
18.9% of variance and it has high loadings with CO,
black smoke and Pb, which are markers for traffic ex-
haust. The third factor explains 17.2% of variance, and is
strongly loaded with heavy fuel oil markers V, Ni
and Cr. Factor 4 explains 9.1% of the total variance,
and it has highest loadings with Cu and Zn. Moderately
high loadings with SO, and V indicate that also this

Variable Factor 1 Factor 2 Factor 3 Factor 4
CO 0.05 0.93 —0.11 0.20
SO2 —0.23 —0.02 0.36 0.41
Black smoke 0.26 0.89 0.07 0.20
Al 0.98 0.10 0.11 —0.00
Cr 0.41 0.10 0.62 —0.36
Cu —0.07 0.19 —0.05 0.76
Fe 0.98 0.12 0.11 —0.00
Li —0.03 0.63 —0.11 — 045
Mg 0.98 0.11 0.07 —0.01
Ni 0.01 0.02 0.96 0.09
Pb 0.15 0.76 0.44 0.26
v 0.28 —0.05 0.76 0.42
Zn 0.19 0.23 0.33 0.60
Eigenvalue 44 2.5 22 1.2
Variance (%) 337 189 17.2 9.1
Source type Soil and street Traffic Heavy fuel oil Unidentified

*Loadings > 0.7 are in bold and > 0.5 are underlined.



3826 J. Hosiokangas et al. | Atmospheric Environment 33 (1999) 3821-3829

fourth factor has a connection with heavy fuel oil burning
processes.

3.3. Linear regression

Forward stepwise linear regression was chosen as a
method. SPSS’s default criteria were used in all calcu-
lations (tolerance criteria 0.0001, p,, < 0.05 and p,_, >
0.10). Al was chosen as a marker for soil and street dust
because it has the lowest detection limit in chemical
analysis and no high loadings in other factors. There are
no good elemental markers for traffic exhaust, but CO
seemed to be unique and can be used as a marker (Lewis
et al., 1986). The best marker for heavy fuel oil burning
was Ni because there were no remarkable loadings in
other factors. The most unique tracer for unidentified
source (factor 4) was Cu. According to the emission
inventory made in study area (Hadnninen et al., 1992),
wood burning is an important source of particles in
Kuopio, especially in winter due to domestic heating. Soil
dust and wood burning are often the only remarkable
sources of potassium in many urban environments, and
this was assumed to be the case in Kuopio. Lewis et al.
(1986) estimated the amount of potassium in air samples,
which originated from wood burning by subtracting po-
tassium from soil away from the total potassium concen-
tration using known K/Fe ratio in soil dust. In another
study Lewis et al. (1988) used K/Fe ratio in ambient air
coarse (2.5-10 um) particle fraction as a surrogate for
a ratio in soil dust. In our case the composition of soil
dust was not known, but we used regression analysis to
estimate potassium from wood burning. It must be noted
that preliminary factor analysis gave constantly the high-
est loading of potassium in the soil factor without re-
markable loadings in any other factor. The result of
regression is presented in Table 4. Calculation of
K 00q resulted in 8 out of 38 cases (21%) with concentra-
tion under zero. Those values were all only slightly nega-
tive, and were replaced by zero.

The results of final PM10 apportionment regression
are presented in Table 5. Model 1 has been calculated
using sources identified by factor analysis and model 2
includes also the wood burning tracer Ky, .4-

All regression coefficients of tracers were significant,
except Cu (factor 4), the coefficient of which was negative
and non-significant (not shown). This may indicate that

Table 4
Regression equations of wood burning based potassium

Regression equation of potassium and potassium from wood
burning Kyooq (Hgm ™)
K =(0.22 + 0.01) Al + (0.05 + 0.01)
p < 0.0000 p = 0.0003

Kweoa = K — 0.22A1

Table 5
Final apportionment models of PM10

Regression models of PM10 (ugm ™3 (n = 38)

Model 1

PM10 = (13.2 £+ 0.5) AI*** + (5.2 + 1.5) CO**
+ (1524 + 574) Ni** + (6.4 + 2.1)**
R? =097

Model 2

PM10 = (13.8 + 0.4) AI¥** 4 (5.8 + 1.2) CO***
+ (987 £ 466) Ni* + (65 + 14)Kyooa™**
+ (4.1 4+ 1.8)*
R? =098

Significance levels: *p < 0.05 **p < 0.01 ***p < 0.001

MODEL 1
Unknown
23 %
Soil and
street
dust
46 %
Heavy
fuel oil
18 % Traffic
13
MODEL 2
Unknown
15 %

Heavy Soil and
fuel oil street
12 % dust
48 %
Traffic
14 %
Wood
burning
11 %

Fig. 3. The source contributions to the mean PMI0
(27.2 ugm~3) in the study period. Model 1 with the sources
identified by the factor analysis. Model 2 includes also wood
burning.

source emitting copper was included in the other source
groups in the model.

The source contributions to the mean PM10 concen-
tration 27.2 ugm™ > are presented in Fig. 3. Soil and
street dust represents 46-48 %, traffic 13-14%, heavy fuel
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Fig. 4. Predicted vs. observed PM10.

oil 12-18% and wood burning ca. 11% from the mean
concentration and the proportion from unidentified
sources is 15-23%. Fig. 4 displays scatterplot of pre-
dicted vs. observed values of PM10 in 38 days. The data
points with high concentrations have no major influence
on the regression slope. There are two outliers in the
middle range of data having standard residuals — 2.11
and 3.36. One is located above and the other below the
regression line at about the same distance from the line,
nullifying the effect of each other. The residuals in the
final model were nearly normally distributed. Therefore
log transformations were not performed.

The stability of regression solution for the change of
marker elements were tested using Fe and Mg instead of
Al as a marker for soil dust. The coefficients of the
markers did not change considerably, and their 95%
confidence intervals were overlapping.

The source contributions from the full measuring peri-
od are strongly emphasized by dust episode. When the
period was divided in two separate parts, winter (8 Feb-
ruary-17 March) and spring (21 March-26 April), and
the contributions were recalculated, the effect of seasonal
variation was seen more clearly. The winter period had
the mean PM10 concentration 17.1 pgm~* and the con-
tributions were 23% (4.0 ug m ™) from soil source, 25%
(4.2 pgm~?3) from traffic, 18% (3.1 pgm ) from heavy
fuel oil combustion, 15% (2.6 pgm ) from wood burn-
ing, and 19% (3.3 ugm ) from unidentified sources. The
mean PM10 in the spring period was 44.3 pgm ™3, and
the respective contributions were 64% (28.5 pgm™?)
from soil, 6% (2.8 ugm ™) from traffic, 8% (3.6 pgm~?)
from heavy fuel oil combustion, 10% (4.3 ugm~?3) from
wood combustion, and 12% (5.1 pgm ™~ *) from unidenti-
fied sources.

160 +
HEUnknown
140 + EWood burning
120 + M Heavy fuel oil burning
E Traffic
m 100 [ISoil and street dust
E
[=2]
=

Fig. 5. Daily source contributions of different sources estimated
by model 2.

The daily source contributions of PM 10 are possible to
estimate by setting the daily tracer concentrations of each
source to the regression equation. It must be kept in mind
that this kind of single tracer method is more sensitive to
errors in data than methods which use several markers
per source (as CMB). Fig. 5 shows the estimated daily
source contributions. Soil and street dust is the main
source during dust episode, but burning processes and
traffic dominate during winter months.

4. Discussion
Henry (1987) has strongly criticized the use of

factor analysis as a quantitative receptor modeling
method. However, FA-MLR uses factor analysis only as
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a qualitative method for describing the data. Ito et al.
(1986) have investigated the sensitivity of qualitative fac-
tor analysis as a part of FA-MLR method. Random
errors up to 30% had no significant qualitative impact on
factor analysis solutions. Reducing number of samples
from 70 to 35 caused more inaccuracies in the interpreta-
tion of the factors. However, the requirement for min-
imum number of samples according to Henry et al. (1984)
seems to be reliable. Number of samples and variables in
this study meet those requirements.

Factor analysis of 38 days’ data was misleading be-
cause of the impact of a dust episode. High concentra-
tions of many marker elements during these two days
caused strong “source independent” variation, and factor
analysis interpreted most elements to originate from the
same source. When factor analysis was carried out with-
out dust episode days, the results were more reliable.
Nevertheless, the meaning of factor 4, which was strongly
loaded with Cu and also with Zn, V and SO,, remained
unclear. The use of 36 samples instead of 38 samples in
the factor analysis is justified, because the purpose of the
factor analysis is only to produce a qualitative portrait
on the source situation in the study area. This is espe-
cially the case in this kind of studies with limited number
of samples. The regression analysis can thus be conduc-
ted with all 38 samples, because it can be treated as an
independent step in the receptor modeling procedure.

Al appears to be the best tracer for soil and street dust
in airshed of the study area, but Fe and Mg are potential
options. Because the ground was covered by snow until
early April, the main wintertime sources of Al were
streets, which were sanded to prevent slipping.

Finding a marker element for traffic exhaust has been
a problem in many receptor modeling studies over the
past few years because of the use of unleaded fuel. How-
ever, Lewis et al. (1986) showed in their Denver study
that CO is equivalent to fine particle Pb as a tracer of
primary motor vehicle emissions. The measuring site in
Kuopio was located so close to the center of town that
the main source of CO is traffic. There was still quite high
loading of Pb (0.76) in a traffic factor although selling of
leaded gasoline had ended four months before the begin-
ning of this study. This could have been a consequence of
lead that was still in oils, exhaust pipes, and fuel systems.
Pb was, however, not sufficient for regression because of
high loading in the heavy fuel oil burning factor.

The relation of heavy fuel oil and wood burning is
interesting in Kuopio. In model 1 the proportion of
heavy fuel oil burning is 18%, but in model 2 with wood
burning, it is only 12% (Fig. 3). Approximately 2 km East
from the measuring site (see Fig. 1) is located a chipboard
factory, which co-combusts waste wood, waste hydraulic
oil, and heavy fuel oil. The factory lacks emission control
systems, and particle emissions are strongly dependent
on combustion conditions. On the basis of manufac-
turer’s specifications, waste hydraulic oil contains re-

markable amounts of Zn and also small amounts of Cu.
Because factor 4 was loaded with Cu and Zn, it is prob-
able that this factor represents, at least partly, co-com-
bustion of heavy fuel oil, hydraulic oil and waste wood at
this factory. This kind of mixed fuel source gives contri-
bution to both vanadium- and potassium-related sources
and can affect the proportions of both of them. This may
also explain the negative regression coefficient of Cu
because the source emits both vanadium and potassium.
Validation of this suggestion would need further source
sampling and analysis.

It is unresolved why factor analysis found potassium
only in the soil factor. One explanation may lie in the fact
that we had limited number of cases available, which
restricts the accuracy of analysis. To have more informa-
tion about the nature of wood burning, we conducted
factor analysis with K, 4, and it loaded strongly in the
same factor with Cu and Zn. This result supports our
previous theory about burning of mixed fuels in Kuopio.

Unidentified sources were responsible for at least 15%
of PM10 particles. Traditionally SO2 ™~ has been a tracer
for long-range transported particles and secondary par-
ticles, but unfortunately ions were not analyzed in this
study. Based on neural network analysis of Ruuskanen et
al. (1995), the long-range transport can be a significant
source of air pollutants in Kuopio. Morandi et al. (1987)
in New Jersey, USA, and Okamoto et al. (1990) in Tokyo,
Japan, have reported secondary aerosol contributions to
be 48% and 30%, respectively. Because of remote loca-
tion of Kuopio the contribution of long-range transport
is assumed to be lower. Long-range transport can also be
partly included into the heavy fuel oil contribution, be-
cause nickel often correlates with SO%~ and other sec-
ondary particle related elements.

5. Conclusions

A receptor modeling study was carried out in Kuopio,
Finland, as part of a health impact study of air pollutants
to produce both qualitative and quantitative information
on sources of PM10 particles during the period Febru-
ary-April, 1994. Factor analysis followed by multiple
linear regression was used as a method, and the main
sources and their contributions to the mean PM10 con-
centrations were estimated. Soil-based material was
found to contribute almost half of the PM 10 during the
study period. Heavy fuel oil burning, traffic exhaust and
wood burning were the other identified sources.

The reliability of factor analysis was found poor when
the data included resuspended dust days with extremely
high PM 10 concentrations. On those days, most markers
reached their maximum levels, which led to false analysis
result. In the case of potassium, regression analysis was
able to produce reduced marker for wood burning. Car-
bon monoxide was the best independent marker for
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traffic, and on the basis of this study, it can be used as
a marker for gasoline- and diesel-powered vehicles in-
stead of Pb or Br, especially in the centers of cities.
Co-combustion of heavy fuel oil, waste wood and hy-
draulic oil in chipboard factory in a distance of about
1.5 km from measuring site was identified as a probable
reason for the connection between wood burning and
heavy fuel oil burning particles.

As a conclusion, dust episodes cause special require-
ments for interpretation of results from multivariate re-
ceptor models. Another important result of this study
was a recognition of effect of co-combustion of wood and
waste residual oil. Although factor analysis did not ident-
ify clear factor for wood burning, it was possible to
estimate the quantity of particles from wood burning
because local emissions were known. Thus, good knowl-
edge of local conditions (sources, climate) is important,
and it must be taken into account in every stage of
modeling. The next step in specifying the source contri-
butions in Kuopio could be source sampling to achieve
the local source profiles and then use CMB in source
apportionment.
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